منابع مشابه
Cyclic homology and equivariant homology
The purpose of this paper is to explore the relationship between the cyclic homology and cohomology theories of Connes [9-11], see also Loday and Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is the circle group. The most general results involve the definitions of the cyclic homology of cyclic chain complexes and the notions of cyclic and cocyclic spaces so precis...
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملG-invariant Persistent Homology
Classical persistent homology is a powerful mathematical tool for shape comparison. Unfortunately, it is not tailored to study the action of transformation groups that are different from the group Homeo(X) of all self-homeomorphisms of a topological space X. This fact restricts its use in applications. In order to obtain better lower bounds for the natural pseudo-distance dG associated with a g...
متن کاملEquivariant Periodic Cyclic Homology
We define and study equivariant periodic cyclic homology for locally compact groups. This can be viewed as a noncommutative generalization of equivariant de Rham cohomology. Although the construction resembles the Cuntz-Quillen approach to ordinary cyclic homology, a completely new feature in the equivariant setting is the fact that the basic ingredient in the theory is not a complex in the usu...
متن کاملHomology of invariant group chains
Let G be a group and let X be a generating set for G. Let F be a free group with basis in one-to-one correspondence to X. The kernel of the canonical map F → G is denoted by R(G, X) and is called the relation subgroup associated with X. If we abelianize the group R = R(G, X), we obtain a ZG-module M(G, X) = R/[R, R], where the G-action is given by conjugation. This module is called the relation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: K-Theory
سال: 2003
ISSN: 1573-0514,0920-3036
DOI: 10.1023/a:1024552111457